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Abstract--An analytical model is presented for determining the displacement and stress distributions
of the Saint-Venant e~tension. bending. torsion and l1e~ure problems for a homogeneous prismatic
beam l,f arbitrary sl"Ction and rectilinear anisotropy. The determination of the complete dis­
placement field requires solving a coupled two-dimensional boundary value problem for the local
in·plane dcform,llilll1s and warping out of the Sl"Ction plane. The principle of minimum potential
energy is applied tll a discreti7ed represcnhltion of the cross-Sl"Ction (Ritl. method) to caleulate
solutions tll this pwblem. The behavior of an anisoln'pil: beam is studied in detail using the resulting
displacement and stress sl,Jutions. where dctinitions arc prescnted for the shear center. center of
twist. hlrsion Cllllstant allli a new geometric parameter: the line of elltension bending centers. Two
sets of numerical results arc prescnted to illustrate flllw seclion geometry. beam length and material
properties alTecl the behavior llf a homogeneous anisotropic cantilever beam.

INTROI>UCTION

Many ~urr~nt tlight stru~tural designs in~orporate fiber ~omposite materials as a means of
~ontrolling weight. deformation and vibration (i.e. stru~tural tailoring). Although fiber
composites are orthotropic at most in matcrial property classification. they can exhibit
extension -shear ~oupling (three-dimensional behavior) when the tiber directions arc not
oriented parallel or normal to the loads. In beam-type (prismatic) composite structures.
su~h behaviors are ~ommonpla~e.e.g. Nixon (1987) observed extension-tlexure-twist coup­
ling in composite tubes under axial load.

Even though this class of prismatic composite structures is fraught with complicated
behavior. one-dimensional beam models have been proposed by Reyfield (1985). Bauchau
(1985). Kosmatka (1986) and Kosmatka and Friedmann (1989). The simplifications in
these models arc derived from assumed kinemati~and/or stress fields with the concomitant
result that only gross stru~tural responses ~an be predicted, such as force-moment resultants
and bend-twist angles. Two- and three-dimensional stress and displacement fields can be
calculated a~~ording to the underlying hypotheses (e.g. Bernoulli-Euler and Saint-Venant
torsion). However. sin~e transverse shear and normal strains are only approximated as a
~onsequen~e of these hypotheses. their corresponding stress components are calculated by
equilibrium. The vcra~ityand limits of appli~ationof these models rest on their comparison
with Saint-Venant solutions for extension. bending. torsion and tlexure. Saint-Venant
solutions '1lso provide data for lo~ating the centroid and shear center as well as calculating
the torsion const.mt, shear correction (shape) factors .md other section properties. At
present. Saint-Venant analytical solutions are available for homogeneous isotropic beams
with simple cross-sections [for example. SokolnikotT (1946)]. Approximate solutions exist
for homogeneous isotropic (Mindlin. 1975: Herrmann. 1965; Mason and Herrmann. 1968)
and orthotropic beams (Tolf. 1985). and a restrictcd class of non-homogeneous. monoclinic
beams (W6rndle. 1982). Moreover. while Lekhnitskii's (1963) formulation of this problem
for an anisotropic body in terms of Airy and Prandtl stress functions is well known. no
solutions are available for a prismatic member with an arbitrary cross-section. In this
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respect. lesan ( 1(76) gave a formal analytical Saint-Yenant solution for an inhomogeneous.
anisotropic beam. but without results.

Herein. an analytical model is presented for studying Saint-Yenanfs extension. bend­
ing. torsion and flexure problems in a prismatic (beam-type) homogeneous structure of
arbitrary cross-section with rectilinear anisotropy. The displacement solutions are based
upon Saint-Yenanfs semi-inverse method. in tenns of three applied tip forces. three applied
moments. the twist rate and cross-sectional dependent functions defining the local in-plane
and out-of-plane deformations inherent in an anisotropic body. The determination of these
cross-sectional dependent functions for each of the seven cases (three forces. three moments.
twist rate) is accomplished by applying the principle of minimum potential energy. where the
cross-section is discretized into quadrilateral and/or triangular subregions with quadratic
displacement interpolation (Ritz method). The final fonn of the displacement and stress
tield for any combination of the six applied loads involves: first. calculating the cross­
section-dependent functions for the appropriate tip loading and for an applied unit twist
rate (Saint-Yenant torsion). second. the stress fields from these two cases are substituted
into the cross-section moment equilibrium equation to determine the actual twist rate that
occurs as a result of the applied loading. and finally, the displacement field is written by
making use of the calculated twist rate and combining the cross-section-dependent functions
via a constraint relation.

Based upon these Saint-Yenant solutions. expressions are presented for the shear
center. center of twist. torsion constant and for a new geometric parameter c.1l1ed the line
of extension-bending centers. where an applied axial force induces bending with no twist.
Two sets of nUlllerical results arc presented to illustrate how variations in cross-section
geometry. beam length and material definition affect the behavior and section properties of
an anisotropic cantilever beam. For brevity's sake. many details of the derivation and the
validation of the computer cmk on isotropic beams have been abbreviated or omitted.
Readers with further interest are referred to Kosmatka (19S6).

It is noted that the Saint-Venant solutions arc valid for regions away from the end. i.e.
Saint-Ven:lnt's prineiple. Recently.linite clement analyses have appeared which address the
loealil.ed nature of stress and deformation ncar such boundaries [for exampk. Giavotto 1.'/

III. (19K3); Goetschcl and flu (19S5)J. While their finite clement discretization procedure is
the sallie as that used herein. these anulyses apply to a ditlcrent set of issues and do not
pertuin to duta for evuluuting the usefulness of one-dimensional beam models.

PRELIMINARIES

Consider a c.lntilevered prismatic beam of length L with .10 arbitrary cross-section of
urea A composed of a homogeneous. rectilinearly-anisotropic material. Let rectangular
Curtesiun coordinates (x. y. :) with corresponding unit vectors (i.j. k) be established with
the origin at the centroid of the root end. Orient the (x. y) axes to coincide with the principal
axcs of the cross-section and let : run parallel to the generator.

Let (II. I", 11') denote the displacement components in the coordinate directions and let
{(1:- and {I;:- denote the arrays of stress and strain whose components are:

(1 a.b)

The strain components are related to the displacements by:

CI'
s.... =;-... oy

(2a-f)

The constitutive relations for a linearly-anisotropic hyperelastic material are given by:
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{u} = [C]{e},

{e} = [SHu}.

[C) = [S] - I.

919

(3a--<:)

where [C) and [S] are fully-populated symmetric matrices with 21 distinct elements.
The loading and boundary conditions for the problem of coupled extension-bending­

torsion-flexure can be stated as follows. The lateral surface is assumed to be traction-free.
i.e.

{au} {r.",} {O}rXI cos (n. x) + ayv cos (n.y) = 0

r x: r y : 0

(4a--<:)

where n is the unit outward normal. At the root end. the beam is fully fixed. Within the
framework of the Saint-Venant problems. this condition cannot be described on a point­
wise basis and the equivalent statement at x = y = == 0 can be used:

u = v = w = O.

ou at' OV au
-=-=----=0
0= a= ox iJy .

(5a-f)

Another acceptable approach for restraining the beam root involves setting to zero the
average of the displacements and rotations of the root cross-section [see Mason amI
Herrmann (1968)].

At the other end. tractions arc applied which reduce to an equivalent force P and
moment M with respect to the centroid of the cross-section (sec Fig. I). The force P

,.V
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Fig. I. Anisotropic cantilever beam.
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and moment M can be decomposed into flexure components; P, and PI' an extensional
component; P:. bending moments; M, and MI' and a torsion moment; AI;. The integrals
of the tractions over any cross-section (0 ~ : ~ L) yield the following expressions in terms
of the six components of force and moment:

i r.: dA = p.t
.4

r r,: dA = P"J4

f .'((1:: dA = -!',[I·-Pt(L-:)
.j

IYI1:: dA = M, - PI (L - :)
A

(6a-f)

STRESS AND DEFORMATION FIELDS

In Saint-Venant extension, bending and torsion ofan anisotropic beam. all of the stress
components are independent of:. When tlt:xure forces P, and Pv are considered. then the
normal stress (1:: will vary linearly with: in accordance with global equilibrium and can be
taken as:

{
P t PI"} II

(1:: = I--- x + I y :+11::(.\"•.1')
l'l' t\"

(7)

where It .• and I•. ,. are the area moments of inertia about the .\" and y axes, respectively, and
O'~l: is part of the stress related to extension. bending and torsion and satisfies eqns (4c e).

f XI1~~ dA = - M •. -I',L, f YI1;~ dA = M, -I',L.
A A

(8a -c)

and the remaining five stresses are :-independenl. In the absence of body forces, the stress
equations ofequilibrium can be cast into a form reflecting the quasi-two-dimensional nature
of the stress state:

oUu 2r n'-- + -~ ... = O.
ux cy

or... 1'(1....---"- + .... -'- = O.
2x fJy

ur,: or" P, P,- + - + -X+ --- I' = o.ax vy IIV I,,'
(9a-c)

The strain components in array {e} [eqn (Ib)) can be divided into two parts. one which is
entirely a function of (x, y) and the other reflecting the linear variation due to flexure forces.
Using the constitutive relations (3b) in terms of the compliances Sii' the strain components
can be written as:

( 10)

where {eO} is a function of x and y only, and £ = liS)) is Young's modulus, which is
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introduced here to abide by the more familiar elementary beam terminology. The array {v}
contains the cross-coupling coefficients whose components are

with

fV1.T - rv v -I v .... }l j - l 1.. 1.. ,,4 .. to 5 .. "6 .. (lla)

(lib)

where \', and v~ are the usual Poisson coefficients, and v4 , Vs, and V6 express the three­
dimensional extension-shear coupling that can occur in a completely anisotropic body.

To obtain the deformation quantities in terms of the extensional force, bending
moments. torque and flexure forces. it is necessary to use the equilibrium equations (9a~).

strain-displacement relations (2a-f). the constitutive relations (3a~) and the end-fixity
conditions (Sa-f). Omitting the very extensive algebraic details involved, the results for the
displacement and strains are:

1', {: ~ \' 4 ~ {' '} } I { V 4 } 2
It = - "EI ·~3 (:-3L)- ,y:(:-_L)+ \'IX"-V2Y" (:-L) + "EI M,.+ ,M: z

- ..-.,' - """ Y.V -

p. { vs }-0.1':- fEj,~ :2I',x+v"y}y(:-L)+ 2 y:(:-2L) +"',(x.y) (12a)

1'\. {: 2 I' ~ "} I { vs }'
I' = - 2£1" 3 (: - 3L) - 7. X:(:- 2L) + {V2)'" - V,X"}(: - L) - 2EI" M, + 2- M: z-

1', { v4 }+()x:- 2EI,.\. {I'hx + 2v2Y}X(z-L)+ i xz(z-2L) +"',(x,y) (12b)

1', I { v4 }
II' = - ,,'£';1-' {{1'sx+I'4.dx(z-L)-xz(z-2L)} - -E"I- M.+ -2 M: xz

- y" .l'.'·

and

P,V, 1'•. v , 0"'.,
l:u = - ····-x(;-L)- -- y(;-L)+-

EI,... Elu ox

P,V2 1'•. 1'2 iJ"',
E... ,. = - EI - x(; - L) - E'I- y(; - L) +:l

J'Y .u uY

(13a)

(l3b)

( I3d)



(l3e)

(130

where e is the twist of the cross-section about the k axis and If; ,. 1/1, and 1/1: are called the
local deformations of the cross-section. These in-plane (1/1" 1/1 ,.) and out-of-plane (1/1:) local
deformations must satisfy the following five conditions: .

( 14a)

(14b)

(I4c)

where a;': is given by:

I { l'~} I { l'~}+ I" M,+ 2 ,~I: y- I... M,.+ 2 M: x. (140

The displacement relations (J 2a-c) can be viewed as that representing deformation of
a beum of isotropic or orthotropic materi;tl plus additional contributions arising from
anisotropic coupling. For example. the presence of V.l and ~. ~ involve coupling of the l1exure
forces P, und P, with extension and twist. the extensional force P: with shear in the .1'-=
und x--= planes and the torque M: with bending in the x-= und y'= planes. If ~'.l and ~'5 arc
absent. then the extension. bending and torsion problems can be studied independently of
the flexure problem. Decoupling of these effects is possible if there is at least one plane of
structural symmetry (monoclinic materiul) which must be the cross-section plane. The
coetllcient ~'f> uccounts for coupling of in-plane sheur with the warpage of the cross­
section. These observations ofcoupling bch'lvior arc in agreement with Worndlc (1982) for
monoclinic materials. Tolf (1985) for orthotropic m'lterials and Sokolnikotf (1946) for
isotropic materials.
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A:-;.-\lYSIS OF THE LOCAL CROSS-SECTION DEFORMATIONS

The local deformation functions for an arbitrary-shaped cross-section are determined
from variationally-derived algebraic equations based upon the minimum potential energy
theorem along with two-dimensional finite element modeling of the cross-section. Although
the displacement field is three-dimensional (12a--<:). the functional form is explicit in the
axial direction so that only the cross-section needs to undergo discretization. In this regard.
it may be classified as a special case of the semi-analytical procedure reviewed by Zienkiewicl
and Taylor (1987). This two-dimensional finite element modeling procedure has been
applied successfully to the torsion of isotropic beams by Herrmann (1965). the flexure of
isotropic beams by Mason and Herrmann (1968) and the flexure of monoclinic beams by
Worndle (1982).

The local deformations must be determined for seven cases (viz.. three applied forces.
three applied moments. twist rate). Standard isoparametric finite element methodology is
employed so that most of the details can be omitted. Within the ith subregion of the cross­
section. the displacement field can be written as:

1/1, = [N,(x.y)]{'fI,,:. 1/1 •. = [N,(x.y)]{'fI..,:·.

1/1: = [N,(x.y)] ['fI:,}. ( 15a-i:)

where [N,(x . .1')] is the bi-quadratic isoparamctric interpolation function and {'I',,:. {'I',,l.
and {'I'J. arc nodal displaccments on the ith subregion boundary in the x. y and :
directions. respectively. Substituting (15a~c) into (13a-f) gives {/:l- for the ith subregion in
h:rms of generalized coordinates for the local deformations; ," and the seven cases of :Q:.

( 16)

where

( 17a)

( 17b)

( 17c)

o

iJx

D[N,(x.y»)
D)'

D[N,(x.y)]

o

o

o

o

o

o

o o ~[N,(x.Y21 IJ[N,(x.y)]
iJy VX

/'1'11'-1/\(1' ''fI1 HI-' I}l , j - t'l x, j, 'I .", f, l :/ J

o

1'[N,(x.y»)
ily

o

()

[/J,) , =

and [Fe) is dclined in the Appendix. Similarly. a matrix form of the displacements (12a-c)
could .tlSO be deli ned in terms of the local deformations and {Q}.

The principle of minimum potential energy is given as

•
1m = L JU,-JW., = 0

,- I

( 18)

where" is the total number of subregions. 15U, is the variation of the strain energy with
respect to the local deformations of the ith subregion;

JU, = (I. ( {&,l-T[C]{f.,l- dA, d:.
Jo J.~I

( 19a)

and <5 H~.• is the variation of the work of external forces of the ith subregion that results
from the applied tractions on the beam ends:
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A simplified form of this expression is obtained by making use of (3a-e) and (13a-f) :

(20)

A set of linear algebraic equations for determining the local deformations in terms of {Q}
is obtained by substituting (16). (19a) and (20) into (18) and integrating over the beam
volume. For the ith subregion. the set of equutions have the form:

[K,J{'I',:· = [[Fw,l - [Fc.lH QJ-.

where the stitfness matrix is defined as

(K,) = LL{B,jl{C]{B,1 dA,

and the force matrices arc rresented as

(21)

(22a)

[

0
()

[Fw I = I., /, Lx[N,(x.}')1 dA,

and

o
()

/, Ly[N,(x.)')l dA,

o 0 () 0 0]
() () 0 () 0

00000

(22b)

[Fd = L L[B,]I{C][Fc,l dA,. (22c)

with (F(.,] also being defined in the Appendix. A closer examination of (21). (22) and (A3)
reveals that the 10c.1I deformations for the applied flexural forces P, and P,. arc beam length
L dependent. while the local deformations for the remaining five cases are independent of
the beam length.

The equations for the ith subregion (21) are assembled into a complete model of the
cross-section using standard finite element procedures. Unit solutions for the locul defor­
mations (t/J" t/J .. t/J:) can be calculuted for the seven cases by setting each of the seven
coordinates of {QJ. equal to unity and the remaining six to zero. Write the calculated local
deformations for the ith subregion as

.f\l1 \ _ {'U )/Q"
I r'l - T'l I' (23)

where each of the seven columns of ['f.] are the unit local deformations associated with the
seven cases of -[ Q}. The dimensional units of the first three columns are length per unit
force. the next three columns arc length per unit moment. and the units for the last column
arc length per unit twist rate. Similarly. the stress components of the ith subregion can be
written in terms of the seven cases as:
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{a;} = [a;]{Q}.

[aj] = [C][[B,]['I';] + [Fe,]].

925

(24a)

(24b)

The desired fonn of the results for the local defonnations should involve the three
applied forces and the three applied moments only. Thus. the twist rate (0) needs to be
expressed in tenns of these forces and moments. To this end. substitute the 4th and 5th
eqns of (24a) into (40. integrate over the n cross-section subregions. and then rearrange to
get:

(25a)

where

amI

I-ah
(lh = --::=:--.

el)

(/~ = f. f :x,«(14d,-Y,«(1~k ),} dA,. (k = 1.7).
, .... I .of t

(25b)

(25c)

(25d)

finally. the loc'll deformation functions can be writtcn in tcrms of the three applicd
forces and three applied moments by combining cqns (23) and (25a):

{'I',} = ['i':H71 {Q}. (26a)

with

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

[71 = 0 0 0 I 0 0 (26b)

0 0 0 0 1 0

0 0 0 0 0 1

(II a~ a) a4 as a6

and

f- t•T _{ f} (26c)IQj - p.,. PY' P:. M,. MY' A-:: •

Similar relations for the stress distribution can be developed by combining (24a) and
(26b)
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f \ - r:;;J[71 U"il
I CT" - lCTd t 'c:' j' (17)

BEHAVIOR OF AN ANISOTROPIC BEAM

The general behavior of a cantilever beam having an arbitrary cross-section and
rectilinear anisotropy will be addressed in two examples, The first example will investigate
the behavior that results from extension. bending and twist only. while the second example
will address flexure and its coupling with the other three Saint-Yenant solutions,

Extension. bending and torsion
Applying an extension force P: through the centroid of the cross-section will produce

a twist rate (0 == aJP:) according to eqn (25a) and displacements of the form [from eqn
(12a--c)] :

u == -aJP:y:+t/J"

l':: aJP:x=+t/J,,"

P.
II':: EA=+t/J:. (28a--c)

From eqns (14a-e) it is straightforward to show that al = O. since there is no twisting of a
homogeneous anisotropic cantilever beam as a result of applied extension and thus:

_ -'I.I) _ P: (. v~ .)
t/J,. - t/J. P: - £A 12Y+ 2'~ .

,I•• == ;,;~JY P. == P: (v X + I' I')
'1". '1". • £A 5 4•• (29a -c)

where the superscript (3) is associated with the third column of the local deformation matrix
in eqn (23).

Applying a bending moment M r will produce bending and twisting (0 == (/4 M,). where:

M, ,
I' == - )£"-/ :'+a4M,x:+!/J,.

- t'x

Mx
If == _),-+.1.£/ - '1":'

t.<

Again integrating cqns (14a--e) it can be shown that:

.1. _ (:iJTi+ a J.rn)M _ M.r (I' ",2 I' J'!)
'1" .• - '1"," 4'1"," ,r - 2E/ I" -! •

.t,'t

(30a-c)

(31a-<1)
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where the superscripts (~) and (7) correspond to the fourth and seventh columns of the
local deformation matrix in eqn (23). Similar relations can be developed for an applied
bending moment M •.• where the twisting of the beam is defined as (0 = a5M,) with

\' ~

as = "EI .
... ..-1:

(32)

Applying an axial force P J that is offset from the centroid will produce extension.
bending and twist. However. there exists an infinite number of points that form a line within
the cross-section. which will be called the "line of extension-bending centers". where the
application of an axial force will produce beam bending with no twisting (0 = 0). The
definition of this line. which passes through the centroid. can be calculated by applying PJ

at a point (xe• Ye) and noting that the equivalent centroidal forces and moments are equal
to:

(33a-e)

Substituting eqns (33a-e). (3Ia) and (32) into (25a) and noting that (0 = 0). the linc of
extension-bending centers is found to be:

(34)

and this line is the x-axis for v~ = O. the y-:\xis for "~ = O. and the entire cross-section x-y
plane if V4 = \'5 = O.

The bending -torsion coupling behavior can be studied by further making usc of (25a).
For ex:\mplc. the application of M: will produce beam twisting of the form:

GJO = fI,( (35a)

where GJ = IllIo and bending. where the displacement of the centroidal axis in the x-= and
y-= planes. can be characterized by [from (12a-e»)

(35b,c)

respectively. In order to produce a statc of pure twist (II = I' = 0). constraint bending
moments must be applied. where

{'os}M, = -2 M: and (36a.b)

This is equivalent to applying a couple ("".I) about a vector that is skew to thc cross-section
normal. where the vector is defined as

(37)

An anisotropic cross-section torsion stiffness (GJ.) that is based upon pure beam twist
(instead of a torsion moment: MJ can be defined by substituting eqns (36a.b), (3Ia) and
(32) into eqn (25a) and rearranging
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GJ)J = .t/lo (38a)

whe:re

(38b)
GJ

GJ. = ( ,. ( )..
I _ GJ ~~)- _ ~~. ~..~-

Elrl :2 £1,,:;

and GJ. ~ GJ.
To place the cantilever beam in pure bending. without twist. the three moments have

to be applied properly. For example. to produce: be:am be:nding in the x-: plane only
(I' = () = 0). the relative magnitudes of the applie:d moments are determined by se:tting eqns
(12b) and (25a) to ze:ro and then combining to form a couple (.\1 c) that acts about a vector
e: equal to

e~ = (39)

Substituting M: into eqn (12a). one can determine a simplified hending displacement
eqll<ltion in terms of an elfective anisotropic bending stilfness:

M,
II = '--

2EIII.,

(40a)

where

[

GJ (I' )C1- .' 5

E1" :2
EI" .. = 1:'/11 , ' • '

(IJ I'; - Cd I'~-

1- E1" (2) - Ell, (2)
(40b)

and £/11 , > £1" for non-zero values of I·~. Similar relations can he easily developed for
bending in the y-: plane where £1"., > £1" for non-Lero values of 1'5,

The "Cel/tef o/twist" is deli ned as a point (x,. y,) within the tip cross-section plane for
which the in-plane displacements (11,1') are zero when the beam is subjected to (MJ only.
The coordinates of this point arc found by setting the displacements (II. 1') and in eqns (12a­
b) to zero and making use of eqns (23), (25c) and (35a) :

(4Ia)

(41 b)

where \fI~N(XI.Yt). \f~hl(Xt'YI)' 'P~7)(X,.Yt) and \f'~71(X,.YI) are the magnitudes of the unit
local deformations at the twist center as a result of an applied twist moment (MJ and
applied twist (0). respectively. Since the coordinates (x, • .1'1) appear on both sides of eqns
(4Ia.b), this location must be determined by iteration.
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Flexure
The coupling between the applied flexural forces and beam twist can be used to locate

a point in the tip cross-section plane commonly called the shear (or flexural) center. Using
the definition that "any flexural force that acts through this point will produce beam bending
without twist «(J = 0)", one can apply a general flexural force (P", p".) that acts through
this point (Fig. 2) and recognize that the equivalent forces and moments at the centroid
are

(42a-e)

where x. and y, are the unknown locations of the shear center. Thus. the location is
determined by substituting eqn (4Ia-e) into eqn (25a) and noting that (0 = 0): thus

a l 01
y=-=--, a

6
l-a

6
'

(43a,b)

For beams that exhibit less than generally-anisotropic behavior (V4 = \'s = 0). a-;' will equal
zero and the above equations reduce to those presented by Sokolnikoff (1946) for isotropic
cross-sections, For homogeneous cross-sections composed of either isotropic or anisotropic
materials. the center of twist and the shear center arc coincident as proven by Reissner and
Tsai (1972).

NUMERICAL RESULTS

Two sets of numerical results arc presented to illustrate how variations in cross-section
geometry. beam length and material definition affect the behavior of the cantilever beam.
In the first set. beams having solid elliptical cross-sections with aspect ratios that range
from thick (alh = 0.1) to circular (alh = I) to thin (alb = 2, 10) were analyzed. In the
second set, beams having thin (tic = O.t) circular arc sections were studied, where the
included arc angle (2{J) varies from 0' (l1at rectangle) to 180) (semi-circle). This second set
of cross-sections was selected because circular arc sections arc representative of cambered
sections (for 10% camber; 2{J ~ 45') commonly found in aerospace applications. Examples

Py

f PySrf

Fig. 2. Beam cross-section and shear center location,
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b

y

l ;I--~ shear centerK¥r
J

.. x

(44a)

(44b)

Fig. 3. Finite element discrcti7.ation of (a) thin elliptical cross-section (lIi" = 10). and (b) thin
circular arc section kit = 10.2/1 = 45).

of typical finite clement mesh definitions for the thin elliptical (a/h = 10) and circular arc
<2/1 = 45 ') sections are presented in Figs Ja.b.

The beam material is assumed to be composed ofa single set of unidirectional composite
fibers (TJOO/520X graphite/epoxy). The properties of the fiber system (Table I) are defined
relative to an orthogonal reference frame (I. 2, J) where the I-axis is coincident with the
fiber direction. Aligning the fiber axes with (x, y. =) will produce orthotropic beam behavior
with V4 = V5 = VI> = O. Complete anisotropic behavior can be observed for fiber sets that
are not aligned with (x, y, =). Three orientation angles (0,.0)"' OJ are used to locate the (I.
2. 3) relative to (x, y. =). where a positive angle is defined as a counterclockwise rotation
about the corresponding Cartesian axis.

Complicated trigonometric relationships cxist bctwccn (0,,0)"' OJ and thc coellicients
(~'I-Vh)' These relations can be simplified if the orient~ttion angles arc studied one at a time.
For example, rotating the fibers, which arc initially aligned with =. about y (0.) will result
in the following non-zero coellicients:

.4 ,'4 ,) ( (Ell) (EII)).,~ () " ~ 0vdcos O,,+SIll lJ,)- 1+i;2'~ - (;1-; cos .,Sln ,
VI = -.--.... -' ..''..... -----..-- ,.- ----

{
4) (Ell). 4 (Ell ),.,}cos (,,+ E~~ Sill 0,+ GI~ -2vl~ cos- 0, SIll- 0,

, (Ell) . ,
~'I) cos' 0, + ~'~.l E~~ SII1- 0,

V~ = {:OS4 ;':-('~;~)Si-~4 ~,: (~~; ~ 2v I ~) cos~ 0, sin~ o,} ,

Table I. Material properties of
T300/520R graphile/epOlty

E'l
Ell = Ell
G'l = Gil = G"
\'11 = ""1

\' ~.1

132.3 GPa
10.75 GPa
5.65 GPa
0.239
OAOO
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2

90
0+------,-----....,...---=::::::::::;==1

o 30 60
Onentalion Angle fly (degree)

Fig. 4. Variation of Poisson and coupling coetlicients with /I, orientation for TJOOj5208
graphite/cpolt)" tibers initially aligned with the: altis of the beam.

1'5 =

(44c)

where the 3-axis and y remain coincident. The variation of v,. V2 and Vs as a function of Oy
is presented in Fig. 4. with Vs reaching its maximum at 12'. Similarly. introducing a rotation
of the fiber set in the y-z plane (0, rotation) results in a non-zcro valuc of v4 with both vs
and Vb cqual to zero. The VI. V2 and V4 relations for a 0, rotation arc equal to V2 [from eqn
(44b)]. v, [from eqn (44a)] and -Vs [from eqn (44<:)]. respectively. when Oy is replaced with
0" and the indices (2) and (3) arc exchanged. In order to introduce a non-zero value of Vb

(with v4 = Vs = 0). the fibers (I-axis) are initially aligned with x and then the tiber system
is rotated about z (OJ. so that z and thc 3-axis remain coincident. thus

(45a)

( (
EJJ ) , (En) ., )v, = I', I~~" cos· O. + \"1 --- Sill" O. •" .- E

22
•. Ell .

(45b)

(45c)

Elliptical cross-section
The effect of cross-section geometry and material definition on beam behavior was

studied by analyzing four different homogeneous cantilever beams of length (Lla = 10).
where the aspect ratios of the solid elliptical cross-sections range from thick (alh = O. I) to
circular (alb = I) to thin (alh = 2. 10). Changes in the material property definition were
introduced by rotating the fiber set in the x-z plane (0•. , introduce vs. Fig. 4) and in the
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O.S'"T"'""---------------,

O~---------------.;::;I

9030 60
Orientation Angle 9z (degree)

·O.S4------T'"----_.....-------l
o

Fig. 5. Variation of Poisson and coupling coefficients with 0, orientation for T300j5208
graphite/epolly fibers initially aligned with the .... allis of the beam.

x-y plane (vary 0:. introduce VI" Fig. 5). Rotuting the fibers in the y-: plane (0 •• V4) was
not investigated, since the results from rotations in the x-: plane arc directly applicable.

The variations in the torsion stiffness [GJ. eqn (35a)] and the anisotropic torsion
stiffness [GJiI • eqn (38b)] as a function of fiber orientation in the x-: plane (0,.) and the
cross-section aSlX-oct ratio (a/h) arc presented in Fig. 6, where these results have been
norm~t1ized to the torsion stiffness of an ellipticul cross-section having uniaxial fibers:

(46)

Both of the section constants. GJ and GJ•• ure highly dependent upon the orientation

alb.10 aIb.2 alb·' aIb.O.S
GJa'GJo -0- --0- __ _

GJlGJo -0- -0- -6- __

3

2

30 60 90
Orientation Angle 9y (degree)

Fig. 6. Anisotropic torsion stiffness (GJ.) and torsion stiffness (GJ) of elliptical cross·sections as a
function of 0, fiber orientation.
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angle 0•.• where GJ and GJ. reach relative maximums at 45' and 30'. respectively. inde­
pendent of aih. The curve associated with GJ. creates an upper envelope for the GJ curve
for a given value of a/h. where the two are effectively equal as Vs approaches 0 (0•. ~ 70').
For a given non-zero value of 0•.• the torsion constants for a thin cross-section experience
a much larger increase than a thick section. as a result of a large GJIEfu ratio. For example,
GJ/Efu is 100 times larger for a/b = 10 than for alh = 0.1. Thus for thin sections. rotating
the fibers in the plane of the major cross-section dimension (a) can have a profound effect
while rotating the fibers in the minor direction (b) will produce a negligible increase. since
GJIEf,t »GJ/Ef•.•..

The line of extension centers is coincident with the x axis for fibers orientated with the
x-= plane (0,. with v4 = 0). This is easily understood from classical laminated plate theory
[see Jones (1975)]. since offsetting an axial force in the x direction produces an effective
bending moment M, which acts about a vector orthogonal to the fiber plane and thus will
not influence twist (0 = 0). Furthermore. offsetting an axial force in the y direction produces
an effective bending moment M, acting in the fiber plane, that produces twist. Similarly,
rotating the fibers with the y-= plane (Ot with \'5 = 0) will result in the line of extension
centers being coincident with the y-axis. Finally. the line of extension centers is the x-y
plane if the fibers are rotated within the cross-section plane (0: with \'4 = Vs = 0).

The movement of the shear center in the x direction (x,/2a) as a function of fiber
orientation in the x-= plane (0,) and aspect ratio (alh) is presented in Fig. 7. These results
illustrate that: (I) thin cross-sections (large a/h) can experience large movements (x, ~ 18a).
(:!) the shear center will lie outside of the cross-section for almost all non-zero values of
rotation (5' < 0, < 75'). and (3) the maximum movement generally occurs for values of
0, ncar 30 for thick sections and 35 for thin sections. Rotating the fibers in the x-=
plane with a valuc of (-0,.) will producc idcntical movemcnts but in the -x direction.
Furthermore. the shear center location is linearly depenHent upon beam length for material
configurations having non·zero valucs of either V4 or v~. Otherwise, the shear center is
independent of beam length for either isotropic or a restricted class (VI, :1= 0, V4 = V5 = 0)
of orthotropil: materials.

Thill circl/lar arc s('cliOlls
A second set of homogcneous cantilever beams of length (Llc = 10) having thin

(tIc = 0.1) circular arc sections was analyzed, where c is the mid-line length of the arc cross­
section. This study investigated changes in the cross-section properties as a result of varying
the included are angle (2/J) from 0' (l1at rectangle) to 180' (semi-circle) and varying the

10r---------------...,

l'lI
~ 5..
)(

30 60 90
Orientation Angle 9y (degree)

Fig. 7. Shear center l<X:ation (.t,) of elliptical cross-sections as a function of U, fiber orientation.
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3-r------------------.

30 60 90
Orientation Angle 9y (degree)

Fig. ll. Anisotwpic torsion stifTness (GJ.,) of thin circular arc SI.'Ctions as a function of 0, fiber
oril:ntation.

material property deflnition by rotating the tiber set in the x--: plane (0,.. v~. Fig. 4). This
cross-section is of interest because for non-zero included angles. fl, the centroid is located
inside the mid-line of the ..Ire section. whereas the she.tr center is 10C"ltcd. in general, outside
of the arc mid-line.

The variations in the anisotropi<.: torsion stiffness (GJ,,) and the torsion stiffness (GJ)
as u function of orientating the fiber direction in the x·: plane (Oy) and v:'lrying the included
angle (2f/) arc presented in rigs 8 and 9, n.:spedivcly. The results ure normalized using the
torsion stiffness of a thin rectangular cross-section with uniaxial fibers:

(47)

where k = 0.312 for tic = 0.10. From Fig. 8. GJ" for slightly-curved arc sections (2P < IOU)
is dependent upon 0,. (vs) only. since In is effectively constant, whereas for highly-curved
sections the dependency on (),. is much less. since If( has increased. Compuring Figs 8 and
9. the torsion constant (GJ) is always lower than (GJ.,) for a given orientation angle and

3-r-----------------,

o

~ 2
a

90
10""'~-----,-----_.....---....;;::~'O

o 30 60
Orientation Angle 9y (degree)

Fig. 9. Torsion stiffness (GJl of lhin circular arc sl.'Clions as a funclion of 0, fiber orientation.
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9-r--------------..,
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o 213. 0°
o 2p.1OO

A 2p.450

o 2p.900

v 213.1800

9030 60
Orientation Angle 9y (degree)

O_~---.~_r_-....--~::::::f~~ ....
o

Fig. 10. Shear center location (.t,) of thin circular arc sections as a function of 0, fiber orientation.

included angle. As (2(J) is increased from 0" to 90'. the magnitude of(GJ,,) steadily decreases
while the value of (GJ) significantly increases and its maximum shifts from 0,. = 45' to
Or = 30°. However. for (2{J > 90°). (GJ.) further decreases because of increasing I" and
(GJ) now decreases to remain less than (GJ.).

The x and y direction locations of the shear center as a result of varying the material
orientation angle Or and the included arc angle (2{J) arc presented in Figs 10-12. The x
direction distance of the shear center from the centroid (x';c) is presented in Fig. 10. As
the included angle of the arc is increased from a slight curve (2{J ~ 0". 10") to a semi-circle
(2{J = 180"). the maximum (x,) distance is reduced by a factor of 10. This maximum distance
occurs at 0, = 35" for slightly-curved arcs and 0,. = 30" for a semi-circular :trc. Furthermore.
for the current beam length (LIe = 10). the shear center is located well outside of the section
planform for almost all included angles and tiber orientations. In Fig. II. the)' direction
distance of the shear center from the centroid is presented. where the results are normalized
to the results for a homogeneous isotropic arc section:

0.8

0.6 o 213.10°

o 213 _ 45°

A 213_90°

o 213.1800

90
0.4+--~---.,.------.--~----i

o 30 60
Orientation Angle 9y (degree)

Fig. 11. Shear center location (Y.) of thin circular arc sections as a function of 0, fiber orientation.
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0

1.2

~ 0.8

..
>. 0.6
N

0.4

0.2

0

-0.2
0 30 60 90

Orientation Angle 9y (degree)

Fig. 12. Shear center location measured from the mid-line of the arc Sl:ction (.I". -.1',,) as a function
of /1, fiber orientation.

(sin 2 II - 2/n cos f1 + /I sin /I
t' :::: c--_······_--··· -.----... -----
.•, 2/F(II - cos II si n fl)

(48)

Thc rcduction in the y din:ction ollsct can be signilicant fllr liber angles less th<ln 70
where this clli:ct is more pronounced in slightly-curved arc sections (2/; ~ 10 ) than in
highly-curved arc sections. Fur liber directions where I'~ is negligible. the y direction shear
centcr offset is identicul to the isotropic prediction, These results ure presented in an
alternate form (sec Fig, 12) as the y direction shear center dislUnce measured from the mid­
line of the arc section (y, - Yo) normalized to one-half of the section thickness (1/2). These
results illustrate that for slightly- to moderately-curved arc sections (21I ~ 45 ) it is possible
to Im;ate the shear center on the inside of the arc mid-line and nearer to the centroid by
properly sek'Cting the tiber orientation angle. For highly-curved arc sections. it is possible
to locate the shear center closer to the arc mid-line. but it is not possible to locate it on the
inside of this arc-line.

CONCLUSIONS

An analytical model has been developed for determining the displacement and stress
distributions to the Saint-Venant extension. bending. torsion and Ilexure problems for a
homogeneous prism~ltic anisotropic beam with an arbitrary cross-section. The principle of
minimum potential energy was applied to a discretized representation of the cross-section
to determine the local deformations in-plane and warping out of the section plane. All of
the properties that define the behavior of the anisotropic section have been developed.
including the shear center, tension center and the center of twist. A new geometric parameter.
the line ofextension centers. is presented, which passes through the centroid and has a slope
equal to (\'4/,,)/(1'5/..,.). A numerical analysis of four cuntilcver beams having different
elliptic'll cross-sections and lengths revealed that; (I) the anisotropic torsion constant (GJ.,
reaches a relative maximum at a fiber direction of (30) whereus (GJ) reaches a maximum
at (45), (2) for thin sections. rotating the fibers in the plane thut includes the major section
dimension can have profound effects on the torsion stiffness. (3) the sheur center location
is a beam length-dependent property if either v4 or \' ~ exist (rotation of the material fibers
about the x or y axes), and (4) the shear center will lie well outside of the section planform
for thin sections. A second numerical study of thin circular arc sections showed that: (I)
increasing the included arc angle (camber) will increase (GJ) and decrease (GJ,) up to
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(2{J = 90') independent of material definition because of increasing I..., (2) increasing the
included arc angle from 0' to 1800 will greatly reduce the maximum:c direction shear center
offset. and (3) for slightly- to moderately-curved arc section (2{J ~ 45"), it is possible to
locate the shear center inside of the arc mid-line (y direction) by properly selecting the fiber
orientation angle.
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APPENDIX

The matri~ If~.,J is defined as:

It;:J =

V,
- El,~'\'(:-L)

V,
- i:.tx(:-l.)

I I VI
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o

o

o

o

o

o

o

o

o

I I t VI V.
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Elf EI,., 2EI" 2EI" ,
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0 0 0 0 x
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Integrating the matn~ of (A I) over the beam length results in

rL

[~J d.: = L[Fel
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