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Abstract-—An analyticul model is presented for determining the displacement and stress distributions
of the Saint-Venant extension, bending. torsion and flexure problems for a homogencous prismatic
beam of arbitrary section and rectilinecar anisotropy. The determination of the complete dis-
placement field requires solving a coupled two-dimensional boundary value problem for the local
in-plane deformations and warping out of the section plane. The principle of minimum potential
energy 1 applied to a discretized representation of the cross-section (Ritz method) to calculate
solutions to this problem. The behavior of an anisotropic bean is studied in detail using the resulting
displacement and stress solutions, where definitions are presented for the shear center, center of
twist, torsion constant and a new geometric parameter : the line of extension bending centers. Two
sets of numerical results are presented to illustrate how section geometry, beam length and material
properties affect the behavior of a homogencous anisotropic cantilever beam.

INTRODUCTION

Many current flight structural designs incorporate fiber composite materials as a means of
controlling weight, deformation and vibration (i.e. structural tailoring). Although fiber
composites are orthotropic at most in material property classification, they can exhibit
extension-shear coupling (three-dimensional behavior) when the fiber directions are not
oriented parallel or normal to the loads. In beam-type (prismatic) composite structures,
such behaviors are commonplace, e.g. Nixon (1987) observed extension-flexure—-twist coup-
ling in composite tubes under axial load,

Even though this class of prismatic composite structures is fraught with complicated
behavior, one-dimensional beam models have been proposed by Reyfield (1985), Bauchau
(1985). Kosmatka (1986) and Kosmatka and Fricdmann (1989). The simplifications in
these models are derived trom assumed kinematic and/or stress fields with the concomitant
result that only gross structural responses can be predicted, such as force-moment resultants
and bend-twist angles. Two- and three-dimensional stress and displacement fields can be
calculated according to the underlying hypotheses (c.g. Bernoulli-Euler and Saint-Venant
torsion). However, since transverse shear and normal strains are only approximated as a
conscquence of these hypotheses, their corresponding stress components are calculated by
cquilibrium. The veracity and limits of application of these models rest on their comparison
with Saint-Venant solutions for extension, bending. torsion and flexure. Saint-Venant
solutions also provide data for locating the centroid and shear center as well as calculating
the torsion constant, shear correction (shape) factors and other scction propertics. At
present, Saint-Venant analytical solutions arc available for homogencous isotropic beams
with simple cross-sections [for example, SokolnikofT (1946)]. Approximate solutions exist
for homogencous isotropic (Mindlin, 1975 Herrmann, 1965 ; Mason and Herrmann, 1968)
and orthotropic beams (Tolf, 1985). and a restricted class of non-homogeneous, monoclinic
beams (Worndle, 1982). Moreover, while Lekhnitskii’s (1963) formulation of this problem
for an anisotropic body in terms of Airy and Prandtl stress functions is well known, no
solutions are available for a prismatic member with an arbitrary cross-section. In this
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respect. [esan (1976) gave a formal analytical Saint-Venant solution for an inhomogeneous.
anisotropic beamn. but without results.

Herein, an analytical model is presented for studying Saint-Venant's extension. bend-
ing. torsion and flexure problems in a prismatic (beam-type) homogeneous structure of
arbitrary cross-section with rectilinear anisotropy. The displacement solutions are based
upon Saint-Venant's semi-inverse method, in terms of three applied tip forces. three applied
moments. the twist rate and cross-sectional dependent functions defining the local in-plane
and out-of-plane deformations inherent in an anisotropic body. The determination of these
cross-scctional dependent functions for each of the seven cases (three forces. three moments,
twist rate) is accomplished by applying the principle of minimum potential energy, where the
cross-section is discretized into quadrilateral and/or triangular subregions with quadratic
displacement interpolation (Ritz method). The final form of the displacement and stress
tield for any combination of the six applied loads involves: first, calculating the cross-
section-dependent functions for the appropriate tip loading and for an applied unit twist
rate (Saint-Venant torsion). second. the stress fields from these two cases are substituted
into the cross-section moment equilibrium equation to determine the actual twist rate that
occurs as a result of the applied loading, and finally, the displacement field is written by
making use of the calculated twist rate and combining the cross-section-dependent functions
via a constraint relation.

Based upon these Saint-Venant solutions, expressions are presented for the shear
center, center of twist, torsion constant and for a new geometric parameter called the line
of extension-bending centers, where an applied axial force induces bending with no twist.
Two sets of numerical results are presented to illustrate how variations in cross-section
geometry, beam length and material definition affect the behavior and section propertics of
an anisotropic cantilever beam. For brevity's sake, many details of the derivation and the
validation of the computer code on isotropic beams have been abbreviated or omitted.
Readers with further interest are referred to Kosmatka (1986).

Itis noted that the Saint-Venant solutions are valid for regions away from the end, i.c.
Saint-Venant's principle. Recently, finite clement analyses have appeared which address the
localized nature of stress and deformation neuar such boundaries [for example, Giavotto et
al. (1983) ; Gocetschel and Hu (1985)]. While their finite element discretization procedure is
the same as that used herein, these analyses apply to a different set of issues and do not
pertain to data for evaluating the usefulness of one-dimensional beam models.

PRELIMINARIES

Consider a cantilevered prismatic beam of length L with an arbitrary cross-section of
arca A composed of a homogencous, rectilinearly-anisotropic material. Let rectangular
Cartesian coordinates (x, v, z) with corresponding unit vectors (i, j, k) be established with
the origin at the centroid of the root end. Orient the (x, y) axes to coincide with the principal
axes of the cross-section and let = run parallel to the generator.

Let (u, v, w) denote the displacement components in the coordinate directions and let
ta) and !¢} denote the arrays of stress and strain whose components are :

(LT 1
105 = Oxr Oy Ooos Tpoy Toas Ty } s

AT - N .
l"" = {CU,E).'..,E_.:, Vvzs Tazs l’vn‘}‘ (ld‘b)

The strain components are related to the displacements by :

cv + w cu + aw Ju + v
T = 5 b 3 Ye=ast amy Vo= oA
oz dy Y9 ax’ Y dy  ix

fyvz =

(2a-f)

o,

The constitutive relations for a linearly-anisotropic hyperelastic material are given by :
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{o} = [CY{e}.
{e} = [Sl{g},
[C1=(S]"". (3a—)
where [C] and [S] are fully-populated symmetric matrices with 21 distinct elements.
The loading and boundary conditions for the problem of coupled extension-bending-

torsion-flexure can be stated as follows. The lateral surface is assumed to be traction-free,
le.

ax X rxy 0
T pcos (A, x)+< 0, pcos(A,¥y) =<0 (da—)
Te T, 0

where 7 is the unit outward normal. At the root end, the beam is fully fixed. Within the
framework of the Saint-Venant problems, this condition cannot be described on a point-
wise basis and the equivalent statement at x = y = z = 0 can be used:

du v v du

————— = 0. (5a-f)

Another acceptable approach for restraining the beam root involves setting to zero the
average of the displucements and rotations of the root cross-section [sce Mason and
Herrmann (1968)).

At the other end, tractions arc applicd which reduce to an equivalent force P and
moment M with respect to the centroid of the cross-section (sce Fig. 1). The force P

1

Fig. 1. Anisotropic cantilever beam.
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and moment M can be decomposed into flexure components: P, and P,. an extensional
component ; P_, bending moments; M, and M, and a torsion moment : M.. The integrals
of the tractions over any cross-section (0 < - < L) yield the following expressions in terms
of the six components of force and moment:

1..d4d = P, xo..dd = -M —-P(L-2)
JA o
t,.d4d =P, yo.dd =M —P(L-2)
e oJA
r r
g..d4 =P. (vt =yt dd = M. (6a-f)
oA oA

STRESS AND DEFORMATION FIELDS

In Saint-Venant extension, bending and torsion of an anisotropic beam. all of the stress
components are independent of z. When flexure forces P, and P, are considered. then the
normal stress o, will vary linearly with = in accordance with global equilibrium and can be
taken as:

P.r P" 0
g.. = i‘~ X+ [7' yi< + a.. ('\.’ )') (7)

where /., and /,, arc the arca moments of inertia about the x and y axes, respectively. and
a2 is part of the stress related to extension, bending and torsion and satisfics eqns (de-¢),

JxﬁdA:—MWWL.JyﬁdAzMﬁRL
A A

jdmA=&. (8a-c)
A

and the remaining five stresses are z-independent. In the absence of body forces, the stress
equations of equilibrium can be cast into a form reflecting the quasi-two-dimensional nature
of the stress state :

da, (1,
o T =0
61‘)' (’65) —
ox ey
Jr,. Ot,.. P, P,
— e — x4 = 0. (92! -C)

dx * —é;'— ly,v Iu )

The strain components in array {e} [eqn (1b)] can be divided into two parts, onc which is
entirely a function of (x, y) and the other reflecting the lincar variation duc to flexure forces.
Using the constitutive relations (3b) in terms of the compliances S,;, the strain components
can be written as:

{e} = {e°} —{v} {l:f;‘ x+ E};’;;}: (10)

vy

where {e°} is a function of x and y only, and £ = |/S;, is Young's modulus, which is
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introduced here to abide by the more familiar elementary beam terminology. The array {v}
contains the cross-coupling coefficients whose components are

{v}T = (viove, = Lvgvsve}, (11a)
with
Si3
Vi= — =, llb
5, (11b)

where v, and v, are the usual Poisson coefficients, and v,. v, and v, express the three-
dimensional extension-shear coupling that can occur in a completely anisotropic body.

To obtain the deformation quantities in terms of the extensional force, bending
moments, torque and flexure forces. it is necessary to use the equilibrium equations (%a—<).
strain—displacement relations (2a-f). the constitutive relations (3a—c) and the end-fixity
conditions (5a-f). Omitting the very extensive algebraic details involved, the results for the
displacement and strains are:

P‘ : 2 > l v
Y {g( 3L)—~» (=— ’L)+{an‘—vzy‘}(:—L)}-i» SET {M,.+5‘M,.}:2

P, 3
—0vz— SEL {{2\-.x+v,,_v}_r(:-—L)+ ‘2—5}':(:-2L)}+l/1‘(x.y) (12a)

-~

P yz- |
== - =5 2 o Nz=-
‘ 2E1,, { (==3L) ‘*‘* 20+ {vayi = v L)} 2ET, {M ty M}

+0xz— P‘ { v \'+2V1}}T(-"L)+ Yz (-—2L)}+|//y,.(x.y) (12b)

2EI,
P, ( l
W = _’EI"“ Vs V+V4V]’ Y(-—L)‘—\ (- ZL)} Ei” A/’ + 2 M
LIS SV JY Sy (z—L)—yz(z—2L)}
Bl o+ 5 M. )-—25,”{ vsx+veyip(z—L)—yz i
AP SR P gy (120
T EA 2 A y) ise
and
P o=t -L *”‘ 13
B = — ——X(2 — y(z - ¢
o EL, ) - EI” ye— )+ (13a)
_ PV'I ‘ V) 1¢y
= = G- D= PRy D+ (13b)
P, P,
£, = — 3ET, {vsx+viy+2(L— ‘)}x—ZE',”{st+v4y+2(L—=)}y
1 | v, |
—_ = —_ -2
+E," {M +3 2 M, }y ET {M,-f— 5 M:}x SEd {(vsPo4+v,P,—2P.} (13c)
o P\- Ve P 2 - 5'#:
'),V-' = Ell‘.,.{z 'Y+v2y+v4(" L)}'t+ 2E1“ {(le sz )_2v4y("—[‘)}+0x+_a-;

(13d)
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v = P d 4 P d "f/;
T = 'E,” H’C—{" }+\5(~ yr— ;‘E“:‘{\’ Y —Vay )+ “"L_L);**f)l-i— ,_:}_

Py, Py Uf/r .
wm o L) = i (o MANTAS 3
i g, "D Ehrl( D+ + % (130

where 8 is the twist of the cross-section about the & axis and . ¢, and ¥. are called the
local deformations of the cross-section. These in-plane (.. ¥,) and out-of-plane (¢.) local
deformations must satisfy the following five conditions :

b
cy
:r’\l *‘{Satan'*‘sa:m_r“f‘sxso'?:‘{"Sufr:‘*'s{sfv:‘*‘Smfn} =0. (14w
A n ) ,
“‘H[' - “SI:(T“ +S.32drr+Sl,\a::+524rr:+535tr: +S.'(|r,w)' = 0~ (l4b)
.
?;“" + ;';; - Slﬁau“f“sds“u +S%fv(;~+s4fst;*+s*ﬁt\~ +Sm’r“i = 0 {E“C}
p’ﬁ.‘ [N - [13 < + 3 )
oy - .-3”1‘7“-"”‘535“,.‘.+S“(T::+~S.35TY; +3“r,_,+35(.rn‘,'
P r
e 0 Ty eyt e T Dy v 0t = 0, (14d)
] o/ P T ap T e
t"if}‘. i . . £} + * * ¥
lﬁl‘ - (3!4”\‘+‘S:4G‘-‘-+’SNG:: +.S44T..:+Su‘(‘: +5~u»fvry
I) ¥
. YO e .S | L 2 . .
AT 2T ARATPR G U SN Py vl vt =00 (Hde)
Sl s ¥ i $ 1
where 62, is given by
(f;’: = :\',ﬂ'“+\'2U’.,»+"4f“,3+\'5'5‘:"*‘"“1.;_-:‘
) 4

A TR IR ) A RS

vyl e e o p
T, AR R E R

71!\
| 1 . v, ) .
+ . M, + M [” M.+ > M.rx. (141)

The displacement refations (12a-¢) can be viewed as that representing deformation of
a beam of isotropic or orthotropic material plus additional contributions arising from
anisotropic coupling. For example, the presence of vy and v involve coupling of the flexure
forces P and P, with extension and twist, the extensional force P, with shear in the y-z
and x-z plancs and the torque M. with bending in the x-z and y -z planes. If v, and v are
absent. then the extension, bending and torsion problems can be studied independently of
the flexure problem. Decoupling of these effects is possible if there is at least one plane of
structural symmetry (monoclinic material) which must be the cross-section plane. The
coctlicient v, accounts for coupling of in-plane shear with the warpage of the cross-
section. These observations of coupling behavior are in agreement with Worndle (1982) for
monoclinic materials, Tolf (1985) for orthotropic materials and Sokolnikoff (1946) for
isotropic materials.
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ANALYSIS OF THE LOCAL CROSS-SECTION DEFORMATIONS

The local deformation functions for an arbitrary-shaped cross-section are determined
from variationally-derived algebraic equations based upon the minimum potential energy
theorem along with two-dimensional finite element modeling of the cross-section. Although
the displacement field is three-dimensional (12a—). the functional form is explicit in the
axial direction so that only the cross-section needs to undergo discretization. In this regard.
it may be classified as a special case of the semi-analytical procedure reviewed by Zienkiewicz
and Taylor (1987). This two-dimensional finite element modeling procedure has been
applied successfully to the torsion of isotropic beams by Herrmann (1965). the flexure of
isotropic beams by Mason and Herrmann (1968) and the flexure of monoclinic beams by
Worndle (1982).

The local deformations must be determined for seven cases (viz., three applied forces.
three applied moments, twist rate). Standard isoparametric finite element methodology is
employed so that most of the details can be omitted. Within the ith subregion of the cross-
section, the displacement field can be written as:

Vo= [N W W= [N,
Y. = [N WY ) (15a—)

where [V,(x. 1)] is the bi-quadratic isoparametric interpolation function and {\V, . {'V, }.
and {W_}. arc nodal displacements on the ith subregion boundary in the x, y and -
directions, respectively. Substituting (15a-¢) into (13a-f) gives {&} for the ith subregion in
terms of generalized coordinates for the local deformations ; § and the seven cases of [ Q).

e} = [BIW)+[F Q) (16)
where
AV (v v AN.(x.y
e S T o  WNLenl
fx oy
N (x. )] [N, (x, 1]
1 = () - O .
(8] o0 0 0 = (17a)
[N, (x, ¥ I[N, (x., y
0 0 t[N.SU)] ([NSV nl 0
oy ox
A ALEREL ML ML S (17b)
Q) ={P.P.P.M M M.,0} (17¢)

and [Fc] is defined in the Appendix. Similarly, a matrix form of the displacements (12a-¢)
could also be defined in terms of the local deformations and {Q}.
The principle of minimum potential energy is given as

ol = z ()'U,—JPV,‘ =0 (18)

where n is the total number of subregions, dU, is the variation of the strain cnergy with
respect to the local deformations of the ith subregion ;

i
U, = j I {667 [Clie) dA, dz, (19a)
0 J4,

and dW, is the variation of the work of external forces of the ith subregion that results
from thc applicd tractions on the beam ends:
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oW, = f TeOW + 100, +0..00 .oy dd,
4,
-4}‘ {rt:‘s‘br + t&':éwr + O’::d‘l’: ; {(_— = {3} d.“t‘. ( !9b)
4,
A simplified form of this expression is obtained by making use of (3a—) and (13a-f):

P.L . P.L .
W, === | xoU.dA+ == | yoy. dd, (20)
ry A; (%1 4,

A set of linear algebraic equations for determining the local deformations in terms of {Q}
is obtained by substituting (16). (19a) and (20) into (18) and integrating over the beam
volume. For the ith subregion, the set of equations have the form:;

(KIS} = [Fu] = [F Q. (2n

where the stiffness matrix s defined as
(K] = Lj' B8] d4, (22)
A,

and the force matrices are presented as

0 0 6 0 0 0 0

0 0 00 0 0 0
[Fy] = L (22b)

1 l
J.\'[N,(.\'._r)ld:!, J,}'[N.(.\'.)')}d.»t, 000 00
[n' A, !n 4,
and
[F‘(‘,] = LJ‘ [BIII{C]{F('] d“‘;- (22‘:)
A,

with [F] also being defined in the Appendix. A closer examination of (21), (22) and (A3)
reveals that the local deformations for the applied flexural forces P, and P, are beam length
L dependent, while the local deformations for the remaining five cases are independent of
the beam length.

The cquations for the ith subregion (21) arc assembled into a complete model of the
cross-section using standard finite clement procedures. Unit solutions for the local defor-
mations (.. ¢,. ¥.) can be calculated for the seven cases by sctling each of the seven
coordinates of {Q} equal to unity and the remaining six to zero. Write the caleulated local
deformations for the ith subregion as

(W) =[v1o). (23)

where each of the seven columns of [\V,] are the unit local deformations associated with the
seven cases of {@}. The dimensional units of the first three columns arc length per unit
force, the next three columns are length per unit moment. and the units for the last column
are length per unit twist rate. Similarly, the stress components of the ith subregion can be
written in terms of the seven cases as:
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{ai} = [ET]{Q}' (24a)
where

(@] = [CHBI¥]+[Fc]) (24b)

The desired form of the results for the local deformations should involve the three
applied forces and the three applied moments only. Thus, the twist rate (f) needs to be
expressed in terms of these forces and moments. To this end, substitute the 4th and Sth
eqns of (24a) into (4f), integrate over the n cross-section subregions, and then rearrange to

get:

Q7 == a.P‘+(I:R,.+a_‘P_.+a41t1,+a5ﬂ[_,.+a(,M_., (25&1)
where
=% (k=1-5) (25b)
a;
l-a,
Ay = — o | (25¢)
ay
and
”I; = z {xt(({l;)l_,vl(dil; ):} dAn (k = lv7)' (25d)
i=1J4

Finally, the local deformation functions can be written in terms of the three applied
forces and three applied moments by combining eqns (23) and (25a) :

{w.} = [PIT{0}, (26a)
with
1 0 0 0 0 0]
0O I 0 0 0 O
0O 0 t o0 0 O
[T]=f{0 0 0 1 0 0O (26b)
O 0 0o o0 1 O
0 0 0 0 0 1
a, a; ay ag as ae |
and
{0} = {P..P P .M. M.M} (26¢)

Similar relations for the stress distribution can be developed by combining (24a) and
(26b)
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[o.} = [0]IT10}. (27

BEHAVIOR OF AN ANISOTROPIC BEAM

The general behavior of a cantilever beam having an arbitrary cross-section and
rectilinear anisotropy will be addressed in two examples. The first example will investigate
the behavior that results from extension, bending and twist only, while the second example
will address flexure and its coupling with the other three Saint-Venant solutions.

Extension, bending and torsion
Applying an extension force P, through the centroid of the cross-section will produce
a twist rate (6 = a,P.) according to eqn (25a) and displacements of the form [from eqn
(12a-0)]:
= —aP.y:+y,.
v=aP.x:+y,.

P.
_-_ - b
W= T+ (28a-—<)

From eqns (14a-¢) it is straightforward to show that «; = 0, since there is no twisting of a
homogencous anisotropic cantilever beam as a result of applied extension and thus:

P.
‘/’v='}!’i}j,}: EA (\HV“}' ).

2
- bH )y
U, = PP, = (\ v )

' P,
Y, = 'Pﬁn/’. E.;I (vex+vyy), (29a-¢)

where the superscript (3) is associated with the third column of the local deformation matrix
inegn (23).
Applying a bending moment M, will produce bending and twisting (0 = a, M), where:

u= —a,M yz+y,

v= - SEIL a Moz,

M,
" El"} +.. (30a-c)

Again integrating cqns (14a-e) it can be shown that:

T
e IR ¢ M, )
‘I’x = ('Il\' +a4¢l.t )1‘/{\’ = - ,‘;’E‘i‘“(vh}"‘l"zvl.\'}'),
U, = GO +a @M, = 2 (v, vy
¥ ¥ ¥ x ZE[“ 2 »
T T M, )
Y. =" +ay WM, = ~ (vsxyr+vyvs), (3ta-d)

2E7,,
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where the superscripts (4) and (7) correspond to the fourth and seventh columns of the
local deformation matrix in eqn (23). Similar relations can be developed for an applied
bending moment M. where the twisting of the beam is defined as (6 = asM,) with

v
as = ZE}W . (32)

Applying an axial force P, that is offset from the centroid will produce extension,
bending and twist. However. there exists an infinite number of points that form a line within
the cross-section. which will be called the ““line of extension—bending centers”. where the
application of an axial force will produce beam bending with no twisting (8 = 0). The
definition of this line, which passes through the centroid. can be calculated by applying P;
at a point (x.. y.) and noting that the equivalent centroidal forces and moments are equal
to:

P_- = P]. AI‘ = .VCP]. A’[‘ = —xcP]. (33a-C)

Substituting eqns (33a—<), (31a) and (32) into (25a) and noting that ( = 0), the line of
extension-bending centers is found to be:

N [\r
= < X = Vi 7 Xes (34)

Ve
vs I,

= ('l; .
and this line is the x-axis for vy = 0, the p-axis for v = 0, and the entire cross-section x-y
plancif vy = vy = 0.

The bending -torsion coupling behavior can be studied by further making use of (25a).
For example, the application of M, will produce beam twisting of the form:

GJO = M, (35a)

where GJ = 1/a, and bending, where the displacement of the centroidal axis in the x-z and

y-2 planes, can be characterized by [from (12a-c¢))
oM., vsM. | ,
u= {fﬁj:}' and v = — {451“}- . (35b,c)

respectively. In order to produce a state of pure twist (¢ = r = 0), constraint bending
moments must be applied, where

M, = - {‘;’} M, and M, = — {f;} M. (36a.b)

This is equivalent to applying a couple (M,) about a vector that is skew to the cross-section
normal, where the vector is defined as

ey = — {;’}:’- {‘;} j+{1}k. (37

An anisotropic cross-section torsion stiffness (GJ,) that is based upon pure beam twist
(instead of a torsion moment ; M) can be dcfined by substituting eqns (36a,b), (31a) and
(32) into eqn (25a) and rearranging

SAS 28:7-1
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GJ.0 =M, (38a)

where

GJ, = o (38b)

and GJ, = GJ.

To place the cantilever beam in pure bending. without twist, the three moments have
to be applied properly. For example. to produce beam bending in the x-: plane only
(r = 8 = 0). the relative magnitudes of the applied moments are determined by setting eqns
(12b) and (25a) to zero and then combining to form a couple (M) that acts about a vector
e: equal to

vy

¢r= —REl, ., 4EL.pi+{1}j+El, . 4EI., pk. (39)
" —— - ‘;__ —— .
TGl

T —

£l GJ El.,

Substituting A, into eqn (12a), one can determine a simplificd bending displacement
equation in terms of an cffective anisotropic bending stiffness:

M, |
u = 2[;'1‘.‘.“ bl (40a)

where

1 — GJ (v 2
L1 \2
Ll = FEl

G Y GJ VJ>:
Er,\2) kL2

and Ef,, > El,, for non-zero values of v,. Similar relations can be casily developed for
bending in the y-z plane where E1,, > EI,, for non-zro values of vs.

The “center of twist™ is defined as a point (v, 1) within the tip cross-section planc for
which the in-planc displacements (i, ¢) are zero when the beam is subjected to (M.) only.
The coordinates of this point are found by setting the displacements (u, ¢) and inegns (12a-
b) to zero and making use of eqns (23), (25¢) and (35a):

(40b)

. _"-‘L GJ GJ (B0 ! Wi
X, = -;'1" I‘::,‘:"‘ — l: {\l}‘ ("l*.‘l)+ GJ P‘. (~‘(~,‘t) . (4'3)
vl G GJ
: +

4 BT L

M

y Yy >} . (41b)

NT]) !
L (~\'l~."|)+ G

where P (x, 1), PO(x,. ). W (x. 1) and W (x,. 1) are the magnitudes of the unit
local deformations at the twist center as a result of an applied twist moment (M.) and
applied twist (0). respectively. Since the coordinates (. 1) appear on both sides of eqns
(41la.b), this location must be determined by iteration.
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Flexure

The coupling between the applied flexural forces and beam twist can be used to locate
a point in the tip cross-section plane commonly called the shear (or flexural) center. Using
the definition that *‘any flexural force that acts through this point will produce beam bending
without twist (6 = 0)™. one can apply a general flexural force (P,,. P,) that acts through
this point (Fig. 2) and recognize that the equivalent forces and moments at the centroid
are

P =P, Py = P}sv M. = Pysxs—‘sz_st (428—-(:)

where x, and y, are the unknown locations of the shear center. Thus, the location is
determined by substituting eqn (41a—c) into eqn (252a) and noting that (6 = 0) ; thus

(43a.b)

For beams that exhibit less than generally-anisotropic behavior (v4 = v5 = 0), a, will equal
zero and the above equations reduce to those presented by SokolnikofT (1946) for isotropic
cross-sections. For homogencous cross-sections composed of either isotropic or anisotropic
materials, the center of twist and the shear center are coincident as proven by Reissner and
Tsai (1972).

NUMERICAL RESULTS

Two sets of numerical results are presented to itlustrate how variations in cross-section
geometry, beam length and material definition affect the behavior of the cantilever beam.,
In the first set, beams having solid clliptical cross-scctions with aspect ratios that range
from thick (a/h = 0.1) to circular (a/b = ) to thin (a/b = 2, 10) were analyzed. In the
second set, beams having thin (¢/c = 0.1) circular arc sections were studied, where the
included arc angle (2f8) varics from 0 (flat rectangle) to 180 (semi-circle). This second set
of cross-sections was selected because circular arc sections are representative of cambered
sections (for 10% camber ; 2ff x 45°) commonly found in acrospace applications. Examples

shear center

e

centroid /

Fig. 2. Beam cross-section and shear center location.
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(a) b
= X
- ; } ]@T‘
11 ? l
a I
(b) y shear center

p—— xs'q_

y ) JE%
t 1 < L
{ centroid/ b \/

Fig. 3. Finite clement discretization of (a) thin elliptical cross-section (a/b = 10). and (b} thin
circular arc section (¢/t = 10, 21 = 45).

of typical finite clement mesh definitions for the thin elliptical (a/b = 10) and circular arc
(28 = 45") scctions are presented in Figs 3a.b.

The beam material is assumed to be composed of a single set of unidirectional composite
fibers (T300/5208 graphite/cpoxy). The propertics of the fiber system (Table 1) are defined
relative to an orthogonal reference frame (1, 2, 3) where the [-axis is coincident with the
fiber direction. Aligning the fiber axes with («x, v, 2) will produce orthotropic beam behavior
with v, = vy = v, = 0. Complete anisotropic behavior can be obscrved for fiber sets that
are not aligned with (x, p, z). Three orientation angles (0, 0, 0.) are used to locate the (1,
2, 3) relative to (x, y, ), where a positive angle is defined as a counterclockwise rotation
about the corresponding Cartesian axis.

Complicated trigonometric relationships exist between (0., 0,, 0.) and the coefficients
(v,—v4). These relations can be simplified if the orientation angles are studied onc at a time.
For example, rotating the fibers, which are initially aligned with =, about y (6,) will result
in the following non-zero coefficients :

E E . . A
via(cost 0, +sint 0,) — (l + (E”) - (Gl,l>> cos™ 0, sin- 0,

T T (44a)

Ey E N
{cos‘ 0, + (E ) sin® 0, + (C -2, )cos“ 0, sin* ()‘}

. E .
V3 Cos" 0+ vy, (El ') sin® ),
U — Rpa - (44b)

; E\ E o el
{cosJ 0, + (E )sm 0, + (G“ —2v,2>cos~ 0, sin? ()_‘}
22 12

Table |. Material properties of
T300/5208 graphite/epoxy

E, 132.3GPa
E,.=E,, 10.75 GPa
Gp—-G.‘—G 2 5.65 GPa
Vig = ¥y, 0.239

Vi 0.400
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0 T 1
0 30 60 90

Onentation Angle 8y (degree)

Fig. 4. Variation of Poisson and coupling coeflicients with @, orientation for T300/5208
graphite/epoxy fibers initially aligned with the = axis of the beam.

E Y E ) 2 .
2 ((I +v - (7(;'-'~)) cos* ), — (v, 2+ (Eli) - (7—6'—'—)) sin” 0,.) cos* @, sin? 0,
~3712 <22 <12

{cos‘ 0.+ (i;”») sin* 0, + ((;!} —2v|3) cos* 0, sin* 0,}
22 . ' ’

(44¢)

where the 3-axis and y remain coincident. The variation of v, v, and vy as a function of 0,
is presented in Fig, 4, with v reaching its maximum at 127, Similarly, introducing a rotation
of the fiber sct in the y—z plane (0, rotation) results in a non-zero value of v, with both v
and v, equal to zero. The vy, v, and vy relations for a 8, rotation are equal to v, [from egn
(b)), v, [from eqn (44a)] and —v; [from eqn (44¢)], respectively, when 0, is replaced with
0., and the indices (2) and (3) are exchanged. In order to introduce a non-zero value of v,
(with v; = vs = 0), the fibers (1-axis) arc initially aligned with x and then the fiber system
is rotated about z (0.), so that - and the 3-axis remain coincident, thus

E , E s

v, = (v,, (1:::_.1) cos” 0, +v,, <Ei]> sin* 0:), (45a)
E ) EyN .,

(v” (E”> cos? 0. +v,, (é—?) sin? o) (45b)

E E
vy =2 (v., (E‘:f) — vy (Lﬁ)) cos 0, sin .. (45c¢)
Elliptical cross-section

The effect of cross-section geometry and material definition on beam behavior was
studied by analyzing four different homogeneous cantilever beams of length (L/a = 10),
where the aspect ratios of the solid elliptical cross-sections range from thick (a/b = 0.1) to
circular {(a/b = 1) to thin (a/h = 2, 10). Changes in the material property definition were
introduced by rotating the fiber set in the x—z plane (8., introduce vs, Fig. 4) and in the

L
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0.5

o

0 30 60 90
Orientation Angle @, (degree)

Fig. 5. Variation of Poisson and coupling coefficients with 0. orientation for T300/5208
graphite/epoxy fibers initially aligned with the x axis of the beam.

x-y plane (vary 0., introduce v,, Fig. 5). Rotating the fibers in the y-z plane (0., v,) was
not investigated, since the results from rotations in the x-= plane are directly applicable.
The variations in the torsion stiffness [GJ, egn (35a)] and the anisotropic torsion
stiffness [GJ,. eqn (38b)] as a function of fiber orientation in the x-z plane (0,) and the
cross-section aspect ratio (a/b) are presented in Fig. 6, where these results have been
normalized to the torsion stiffness of an elliptical cross-section having uniaxial fibers :

‘h‘
GJy=Gun - (46)

al+ b
Both of the section constants, GJ and GJ,, arc highly dependent upon the orientation
ab=10 aba2 ab=1 ah=05
GJ,/GJ, —o0— —O— —u— ——

GJGJy —0o— —o— —a— 0

Orientation Angle 8, (degree)

Fig. 6. Anisotropic torsion stiffness (GJ,) and torsion stiffness (GJ) of elliptical cross-sections as a
function of 0, fiber orientation.
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angle 0,. where GJ and GJ, reach relative maximums at 45° and 30°, respectively, inde-
pendent of a;b. The curve associated with GJ, creates an upper envelope for the GJ curve
for a given value of a/b. where the two are effectively equal as v approaches 0 (6, = 70°).
For a given non-zero value of 6,. the torsion constants for a thin cross-section experience
a much larger increase than a thick section. as a result of a large GJ/EI, ratio. For example,
GJ/EI,, is 100 times larger for a/b = 10 than for ¢/b = 0.1. Thus for thin sections. rotating
the fibers in the plane of the major cross-section dimension (a) can have a profound effect
while rotating the fibers in the minor direction (b) will produce a negligible increase. since
GJ/EI.. » GJ/EL,.

The line of extension centers is coincident with the x axis for fibers orientated with the
x-z plane (0, with v, = 0). This is easily understood from classical laminated plate theory
[see Jones (1975)]. since offsetting an axial force in the x direction produces an effective
bending moment M, which acts about a vector orthogonal to the fiber plane and thus will
not influence twist (8 = 0). Furthermore, offsetting an axial force in the y direction produces
an effective bending moment M, acting in the fiber plane. that produces twist. Similarly,
rotating the fibers with the y-z plane (¢, with v5 = 0) will result in the line of extension
centers being coincident with the y-axis. Finally, the line of extension centers is the x-yp
plane if the fibers are rotated within the cross-section plane (0. with vy = vy = 0).

The movement of the shear center in the x direction (x,/2d¢) as a function of fiber
orientation in the x—z plane (0,) and aspect ratio (a/b) is presented in Fig. 7. These results
illustrate that : (1) thin cross-scctions (large a/b) can experience large movements (x, = 18a),
(2) the shear center will lie outside of the cross-section for almost all non-zero values of
rotation (57 < (), < 757), and (3) the maximum movement generally occurs for values of
0, ncar 30" for thick scctions and 35 for thin scctions. Rotating the fibers in the x-:
plance with a value of (=0,) will produce identical movements but in the — x direction.
Furthermore, the shear center location is lincarly depentient upon beam length for material
configurations having non-zero values of either v, or v, Otherwise, the shear center is
independent of beam length for cither isotropic or a restricted class (v # 0, vy = vs = 0)
of orthotropic materials,

Thin circular arc sections

A sccond set of homogencous cantilever beams of length (L/e = 10) having thin
(t/c = 0.1) circular arc sections was analyzed, where ¢ is the mid-line length of the arc cross-
section, This study investigated changes in the cross-section propertics as a result of varying
the included arc angle (2f8) from 0° (flat rectangle) to 180" (semi-circle) and varying the

10

0 30 60 90
Orientation Angle 9, (degree)

Fig. 7. Shear center location (x,) of clliptical cross-sections as a function of ¥, fiber orientation.
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28 =0°. 10°
2B = 45°
2p =90°

80

e 2«}

>

a3

\—2B=1ao°

0 30 60 90
Orientation Angle @y (degree)

Fig. 8. Anisotropic torsion stiffness (GJ,) of thin circular arc sections as a function of 0, fiber
oricntation,

material property definition by rotating the fiber set in the x—-z plane (0,. vs. Fig. 4). This
cross-section is of interest because for non-zero included angles, ff, the centroid is located
inside the mid-line of the arc section, whereas the shear center is located, in general, outside
of the arc mid-line.

The variations in the anisotropic torsion stiffness (GJ,) and the torsion stiffness (GJ)
as a function of orientating the fiber direction in the x-2 plane (0,) and varying the included
angle (2f8) are presented in Figs 8 and 9, respectively. The results are normalized using the
torsion stiffness of a thin rectangular cross-scetion with uniaxial fibers :

GJy = Gyket? (47)

where & = 0.312 for ¢/c = 0.10. From Fig. 8. GJ, for slightly-curved arc sections (28 < 10°)
is dependent upon 0, (v4) only, since /., is effectively constant, whereas for highly-curved
sections the dependency on 0, is much less, since /. has increased. Comparing Figs 8 and
9. the torsion constant (GJ) is always lower than (GJ,) for a given orientation angle and

/——— 2p = 90°

2B - 45°

2B = 180°

0 30 60 90
Orientation Angle @y (degree)

Fig. 9. Torsion stiffness (GJ) of thin circular arc sections as a function of 0, fiber orientation.
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Q
9

P T T
0 30 60 90
Orientation Angle 0y (degree)

Fig. 10. Shear center location (x,) of thin circular arc sections as a function of 8, fiber orientation.

included angle. As (2f3) is increased from 0” to 90", the magnitude of (GJ,) steadily decreases
while the value of (GJ) significantly increases and its maximum shifts from 8, = 45" to
0, = 30°. However, for (2ff > 907), (GJ,) further decreases because of increasing /., and
(GJ) now decreases to remain less than (GJ,).

The x and y direction locations of the shear center as a result of varying the material
oricntation angle 0, and the included arc angle (2f8) are presented in Figs 10-12. The x
direction distance of the shear center from the centroid (x,/c) is presented in Fig. 10, As
the included angle of the arc is increased from a slight curve (2 = 0°, 107) to a semi-circle
(2 = 180"), the maximum (x,) distance is reduced by a factor of 10. This maximum distance
occursatf), = 35" forslightly-curved arcs and 0, = 30" for a semi-circular arc. Furthermore,
for the current beam length (L/¢ = 10), the shear center is located well outside of the section
planform for almost all included angles and fiber orientations. In Fig. 11, the y direction
distance of the shear center from the centroid is presented, where the results are normalized
to the results for a homogencous isotropic arc section :

1 ]
0.8
)
Fo
>
0.6 © 28 - 10°
0 2B a45°
4 28a- 90°
o 2pa180°
0.4 T T
0 30 60 90

Orientation Angle 8, (degree)

Fig. 11. Shear center location (y,) of thin circular arc sections as a function of 0, fiber orientation.
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18 X
28 = 180°
1.4
1.2
1_
0.8- 28 = 90°

2y, -y

2p = 10°

0 S oSG—0

0 30 60 90
Orientation Angle @, (degree)

Fig. 12. Shear center location measured from the mid-line of the are section (1, — vq) as a function
of 8, fiber orientation.

. in® B—2f) cos f+fsin f «
N E T B s fsinfy (48)

The reduction in the vy direction offsct can be significant for fiber angles less than 70
where this effect is more pronounced in shightly-curved are sections (2 € 10 ) than in
highly-curved are sections. For liber directions where vy is negligible, the y direction shear
center offset s identical to the isotropic prediction. These results are presented in an
alternate form (sce Fig. 12) as the p direction shear center distance measured from the mid-
line of the arce section (3, — vo) normalized to one-half of the section thickness (1/2). These
results illustrate that for slightly- to moderately-curved are sections (2f8 € 45 ') it is possible
to focate the shear center on the inside of the are mid-line and nearer to the centroid by
properly selecting the fiber orientation angle. For highly-curved are sections, it is possible
to locate the shear center closer to the are mid-ling, but it is not possible to locate it on the
inside of this arc-line.

CONCLUSIONS

An analytical model has been developed for determining the displacement and stress
distributions to the Saint-Venant extension, bending, torsion and flexure problems for a
homogencous prismatic anisotropic beam with an arbitrary cross-section. The principle of
minimum potential energy was applicd to a discretized representation of the cross-section
to determine the local deformations in-plune and warping out of the section plane. All of
the propertics that define the behavior of the anisotropic section have been developed,
including the shear center, tension center and the center of twist. A new geometric parameter.,
the line of extension centers, is presented, which passes through the centroid and has a slope
cqual to (vil,)/(vsl,). A numerical analysis of four cantilever beams having different
clliptical cross-scctions uand lengths revealed that: (1) the anisotropic torsion constant (GJ,)
reaches a relative maximum at a fiber direction of (30 )} whereas (GJ) reaches a maximum
at (457), (2) for thin sections, rotating the fibers in the plane that includes the major section
dimension can have profound effects on the torsion stiffness, (3) the sheir center location
is a beam length-dependent property if either v, or v exist {rotation of the material fibers
about the x or y axes), and (4) the shear center will lie well outside of the section planform
for thin scctions. A second numerical study of thin circular arc sections showed that: (1)
increasing the included arc angle (camber) will increase (GJ) and decrease (GJ,) up to
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(28 = 90°) independent of material definition because of increasing /., (2) increasing the
included arc angle from 0° to 180° will greatly reduce the maximum x direction shear center
offset. and (3) for slightly- to moderately-curved arc section (28 < 45°), it is possible to
locate the shear center inside of the arc mid-line (y direction) by properly selecting the fiber
orientation angle.
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APPENDIX
The matrix [F‘;] is defined as:
B LI, e |
T e h |
Vi (s v f
e, £, "0 |
! = Y3 ! L= (= Vel Vs
_ 2_57;: Ivex+v,3=2(z=L)}x— A T 2E {vex+vp=2(z—-L)}y—- 554 }
Fol= 1 {v 1 , N |
(Fel T ELL {'f-‘*-V:.H- v,(:—L)}x EE{(an’—V:,r')—?.V.y(:—L)} I
! 2 . Ve .
_jvE-I;:{(v,x'—-v,y')+2v,.v(:—L)} - EL {v,x-{- ?y+v,(-—L)}y I
|
Vo o (al _ Y -
—E’—y—y"(- L) El,,)(' L) |
| 0 o0 0 0 0 )
J
: o o 0 0 0
| 1 1 N woo v,
| 81 &0 "E,° 3E1.T3EL
| (A1)
l o o 0 0 x
|
} 0 0 0 0 S
|
|
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Integrating the matrix of (A1) over the beam length results in

where

[F(] =

B vl
T
v,L
EL
| Cox vyt L v
—2—Et'l\5.\+\,“l+ ,'x—m
1
= SE vex+2v.v—viLlx
| . :
-5 {(vyx* =y 37) —v,Lx}
vol
"

f (Fo)d= = LIF]

|
viL . |
e |
voL }
‘VEI _V *
—ld |
| Vi |
BT R ERE Ryl
!
SEf o — v )+, Ly |
<Ll I
|
—i—EI—‘:{Zv.x+v,,_r—\',L§_r ]
vl i I
3ert |
| o 0 0
|
I 0 0 0
I I | |
S
| Ed et TEL
{ 0 0 0
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| o 0 0
!
{ 0 0 0

(A2)

(AD)



